Abstract

Time-domain filtering is a standard analysis technique, which is used to disentangle the two main vector components of the distortion product otoacoustic emission response, exploiting their different phase-frequency relation. In this study, a time-frequency filtering technique based on the continuous wavelet transform is proposed to overcome the intrinsic limitations of the time-domain filtering technique and to extend it also to the analysis of stimulus-frequency and transient-evoked otoacoustic emissions. The advantages of the proposed technique are first discussed on a theoretical basis, then practically demonstrated by applying it to the analysis of synthesized and real otoacoustic data. The results show that the time-frequency approach can be empirically optimized to get effective separation of the components of the otoacoustic response associated with either different generation mechanisms or different generation places. Focusing on a single component of the otoacoustic response with a given time-frequency signature may also improve significantly the signal-to-noise ratio, because the random noise contribution tends to be uniformly distributed on the time-frequency plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.