Abstract

Moving detectors in relativistic quantum field theories reveal the fundamental entangled structure of the vacuum which manifests, for instance, through its thermal character when probed by a uniformly accelerated detector. In this paper, we propose a general formalism inspired both from signal processing and correlation functions of quantum optics to analyze the response of point-like detectors following a generic, non-stationary trajectory. In this context, the Wigner representation of the first-order correlation of the quantum field is a natural time-frequency tool to understand single-detection events. This framework offers a synthetic perspective on the problem of detection in relativistic theory and allows us to analyze various non-stationary situations (adiabatic, periodic) and how excitations and superpositions are deformed by motion. It opens up interesting perspective on the issue of the definition of particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call