Abstract
Nowadays, sleep disorders are contemplated as the major issue in the human lives. The current work aims at extraction of time-frequency information from recorded dataset and provides an efficient sleep stage detection method. Recordings of brain signal namely electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) were carried out under defined clinical condition for the classification of sleep EEG. Subsequent upon the extraction of various features from the raw EEG data, neuro-fuzzy system is trained to classify the sleep stages into three major classes namely awake, slow wave sleep (SWS), and rapid eye movement sleep (REM). This classification would enable medical professionals to diagnose sleep related disorders accurately. The results obtained clearly indicate that the mean performance for SWS stage is profound as compared to REM and awake stage. Specificity and sensitivity of the proposed method are obtained as 95.4% and 80%, respectively. The average accuracy of the system employing neuro-fuzzy approach is found to be 90.6% in which SWS stage was best detected among the other stages of sleep EEG.Graphical abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.