Abstract
We study the fundamental solutions to time-fractional telegraph equations of order 2α. We are able to obtain the Fourier transform of the solutions for any α and to give a representation of their inverse, in terms of stable densities. For the special case α=1/2, we can show that the fundamental solution is the distribution of a telegraph process with Brownian time. In a special case, this becomes the density of the iterated Brownian motion, which is therefore the fundamental solution to a fractional diffusion equation of order 1/2 with respect to time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.