Abstract

Using the time-fractional KdV equation, the nonlinear properties of small but finite amplitude electron-acoustic solitary waves are studied in a homogeneous system of unmagnetized collisionless plasma. This plasma consists of cold electrons fluid, non-thermal hot electrons, and stationary ions. Employing the reductive perturbation technique and the Euler-Lagrange equation, the time-fractional KdV equation is derived and it is solved using variational method. It is found that the time-fractional parameter significantly changes the soliton amplitude of the electron-acoustic solitary waves. The results are compared with the structures of the broadband electrostatic noise observed in the dayside auroral zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.