Abstract

We investigate the time evolution of the temperature and entropy of gravitationally collapsing shells of matter, represented by domain walls, as seen by an asymptotic observer. In particular, we seek to understand how topology and the addition of a cosmological constant affect the gravitational collapse. Previous work has shown that the entropy of a spherically symmetric collapsing domain approaches a constant. In this paper, we reproduce these results, using both a fully quantum and a semi-classical approach, then we repeat the process for a de Sitter Schwarzschild domain wall (spherical with cosmological constant) and a (3+1) BTZ domain wall (cylindrical). We do this by coupling a scalar field to the background of the domain wall and analyzing the spectrum of radiation as a function of time. We find that the spectrum is quasi-thermal, with the degree of thermality increasing as the domain wall approaches the horizon. The thermal distribution allows for the determination of the temperature as a function of time, and we find that the late time temperature is consistent with the Hawking temperature. From the temperature we find the entropy. Since the collapsing domain wall is what forms a black hole, we can compare the results to those of the standard entropy-area relation. We find that the entropy does in fact approach a constant that is consistent with the Hawking entropy. However, both the de Sitter Schwarzschild domain wall and the (3+1) BTZ domain wall show periods of decreasing entropy, which suggests that spontaneous collapse may be prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.