Abstract

We investigated time evolution of structures induced by imposing shear flow on semidilute solutions of high molecular weight polystyrene (PS) by means of both flow light scattering and rheology. PS with weight-average molecular weights of 5.48 × 106 and 2.89 × 106 were dissolved in dioctyl phthalate (DOP). After imposing shear flow with a shear rate γ̇ > γ̇c (the critical shear rate for shear-induced concentration fluctuations), the unique butterfly-type scattering pattern appeared. The pattern had a scattering maximum along the flow direction. The wave number qm and the intensity Im at the scattering maximum decreased and increased, respectively, with time and eventually reached steady state values. The rheological experiments that were carried out on the same solution under the same shear flow revealed two stress overshoots. The second overshoot was found to be related to the development of butterfly pattern and its time change, i.e., to the formation and growth of shear-induced structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.