Abstract

We evaluate the asteroid impact risk from the discovery night onwards using six-dimensional statistical orbit computation techniques to examine the a posteriori probability density of the orbital elements. Close to the discovery moment the observational data of an object are typically exiguous: the number of observations is very small and/or the covered orbital arc is very short. For such data, the covariance matrices computed in the linear approximation (e.g., with the least-squares technique) are known to fail to describe the uncertainties in the orbital parameters. The technique of statistical ranging gives us rigorous means to assess the orbital uncertainties already on the discovery night. To examine the time evolution of orbital uncertainties, we make use of a new nonlinear Monte Carlo technique of phase-space sampling using volumes of variation, which complements the ranging technique for exiguous data and the least-squares technique for extensive observational data. We apply the statistical techniques to the near-Earth Asteroid 2004 AS 1, which grabbed the attention of asteroid scientists because, for one day, it posed the highest and most immediate impact risk so far recorded. We take this extreme case to illustrate the ambiguities in the impact risk assessment for short arcs. We confirm that the weighted fraction of the collision orbits at discovery was large but conclude that this was mostly due to the discordance of the discovery-night observations. This case study highlights the need to introduce a regularization in terms of an a priori probability density to secure the invariance of the probabilistic analysis especially in the nonlinear orbital inversion for short arcs. We remark that a predominant role of the a priori can give indications of the feasibility of the probabilistic interpretation, that is, how reliable the results derived from the a posteriori probability density are. Nevertheless, the strict mathematical definition of, e.g., the collision probability remains valid, and our nonlinear statistical techniques give us the means to always deduce, at the very least, order-of-magnitude-estimates for the collision probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.