Abstract

ABSTRACTWe are reporting here on the current status of our investigations on the time evolution of nanoscale surface morphology of thermally evaporated tungsten carbide coatings on silicon carbide substrates. The purpose of the study is to develop a recipe for creating thermally and chemically stable electrical contacts on silicon carbide electronic devices able to work at elevated temperatures (up to 800 °C) in oxidizing environments. We used thermal evaporation and tungsten carbide (WC) powder as a starting material to produce the thin layer deposition on semi-insulating silicon carbide (6H). Our intended applications are for devices working at 800 °C; therefore, our investigations are carried out at 1 hr intervals of time the samples spent at this temperature, in air at atmospheric pressure. We used Rutherford Backscattering Spectrometry (RBS) for measuring the stoichiometry and depth profile, and Atomic Force Microscopy (AFM) to monitor the surface morphology change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.