Abstract
The time evolution of transmitting 1.6 keV H + and 3 keV Ne 7+ ions through nanocapillaries (100 nm diameter and 10 μm length) in PET insulators was studied. By measuring the angular distribution of the transmitted projectiles it is shown that the majority of ions are transported in their initial charge state along the capillary axis even when the capillaries are tilted with respect to the incident beam direction. The results indicate ion guiding effects, which are produced by charge-up effects influencing the ion trajectories in a self-organizing manner. The data analysis reveals that a certain fraction of capillaries is inclined with respect to the foil normal. Emphasis is given to unravel the influence of the capillary inclination on the guided transmission of the different ions species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.