Abstract
A system of interacting vortices under overdamped motion, which has been commonly used in the literature to model flux-front penetration in disordered type-II superconductors, was recently related to a nonlinear Fokker-Planck equation, characteristic of nonextensive statistical mechanics, through an analysis of its stationary state. Herein, this connection is extended by means of a thorough analysis of the time evolution of this system. Numerical data from molecular-dynamics simulations are presented for both position and velocity probability distributions P(x,t) and P(v(x),t), respectively; both distributions are well fitted by similar q-Gaussian distributions, with the same index q=0, for all times considered. Particularly, the evolution of the system occurs in such a way that P(x,t) presents a time behavior for its width, normalization, and second moment, in full agreement with the analytic solution of the nonlinear Fokker-Planck equation. The present results provide further evidence that this system is deeply associated with nonextensive statistical mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.