Abstract

An analytical solution for the time evolution of decay of two identical non interacting quantum particles seated initially within a potential of finite range is derived using the formalism of resonant states. It is shown that the wave function, and hence also the survival and nonescape probabilities, for factorized symmetric and entangled symmetric/antisymmetric initial states evolve in a distinctive form along the exponentially decaying and nonexponential regimes. Our findings show the influence of the Pauli exclusion principle on decay. We exemplify our results by solving exactly the s-wave delta shell potential model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.