Abstract
Our recent works, which were based on the spectroscopic measurement of strong high frequency electric fields in a plasma, showed that the plasma became a strong Langmuir turbulence state when an intense relativistic electron beam was injected into it. To further confirm this the energy spread and the perpendicular velocity scattering of beam electrons after passing the plasma were measured as well as the strong high frequency electric fields and the electron temperature. The theory of transit-time interactions which deals with the beam scattering in strong Langmuir turbulence was applied to interpret the experimental data. The result again shows that the plasma becomes a strong Langmuir turbulence state. The broadband microwave radiation was also observed simultaneously with the measurement of the perpendicular scattering of the beam electrons. The wider the energy spread and the perpendicular scattering, the stronger the microwave radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.