Abstract
Recent advances in attosecond science have made it increasingly important to develop stable, reliable, and accurate algorithms and methods to model the time evolution of atoms and molecules in intense laser fields. A key process in attosecond science is high-harmonic generation, which is challenging to model with fixed Gaussian basis sets, as it produces high-energy electrons, with a resulting rapidly varying and highly oscillatory wave function that extends over dozens of ångström. Recently, Rothe's method, where time evolution is rephrased as an optimization problem, has been applied to the one-dimensional Schrödinger equation. Here, we apply Rothe's method to the hydrogen wave function and demonstrate that thawed, complex-valued Gaussian wave packets with time-dependent width, center, and momentum parameters are able to reproduce spectra obtained from essentially exact grid calculations for high-harmonic generation with only 50-181 Gaussians for field strengths up to 5 × 1014 W/cm2. This paves the way for the inclusion of continuum contributions into real-time, time-dependent electronic-structure theory with Gaussian basis sets for strong fields and eventually accurate simulations of the time evolution of molecules without the Born-Oppenheimer approximation.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.