Abstract
CoRoT-2, the second planet-hosting star discovered by the CoRoT satellite, is a young and active star. A total of 77 transits were observed for this system over a period of 135 days. Small modulations detected in the optical light curve of the planetary transits are used to study the position, size, intensity, and temporal evolution of the photospheric spots on the surface of the star that are occulted by the planetary disk. We apply a spot model to these variations and create a spot map of the stellar surface of CoRoT-2 within the transit band for every transit. From these maps, we estimate the stellar rotation period and obtain the longitudes of the spots in a reference frame rotating with the star. Moreover, the spots temporal evolution is determined. This model achieves a spatial resolution of 2\circ. Mapping of 392 spots vs. longitude indicates the presence of a region free of spots, close to the equator, reminiscent of the coronal holes observed on the Sun during periods of maximum activity. With this interpretation, the stellar rotation period within the transit latitudes of -14.\circ 6 \pm 10 \circ is found to be 4.48 days. This rotation period is shorter than the 4.54 days as derived from the out-of-transit light modulation. Since the transit data samples a region close to the stellar equator, while the period determined from out-of-transit data reflects the average rotation of the star, this is taken as an indication of a latitudinal differential rotation of about 3% or 0.042 rad/d.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Astronomy & Astrophysics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.