Abstract

In this paper, we consider double trace deformation to single CFT2, and study time evolution after the deformation. The double trace deformation we consider is nonlocal: composed of two local operators placed at separate points. We study two types of local operators: one is usual local operator in CFT, and the other is HKLL bulk local operator, which is still operator in CFT but has properties as bulk local operator. We compute null energy and averaged null energy in the bulk in both types of deformations. We confirmed that, with the suitable choice of couplings, averaged null energies are negative. This implies causal structure is modified in the bulk, from classical background. We then calculate time evolution of entanglement entropy and entanglement Rényi entropy after double trace deformation. We find both quantities are found to show peculiar shockwave-like time evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.