Abstract
The time–energy uncertainty relation (TEUR) plays a fundamental role in quantum mechanics, as it allows the grasping of peculiar aspects of a variety of phenomena based on very general principles and symmetries of the theory. Using the Mandelstam–Tamm method, TEUR has recently been derived for neutrino oscillations by connecting the uncertainty in neutrino energy with the characteristic timescale of oscillations. Interestingly, the suggested interpretation of neutrinos as unstable-like particles has proved to naturally emerge in this context. Further aspects were later discussed in semiclassical gravity theory, by computing corrections to the neutrino energy uncertainty in a generic stationary curved spacetime, and in quantum field theory, where the clock observable turns out to be identified with the non-conserved flavor charge operator. In the present work, we give an overview on the above achievements. In particular, we analyze the implications of TEUR and explore the impact of gravitational and non-relativistic effects on the standard condition for neutrino oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Symmetry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.