Abstract
To achieve successful interception of a target by a missile with efficient time-energy utilization and robustness against external disturbances, a consolidated guidance approach has been proposed in this manuscript. Time-energy efficiency has been accomplished by employing Sine-Cosine algorithm to generate a near-optimal reference trajectory for the pitch and yaw heading angles. Thereafter, an adaptive robust time delayed controller has been designed to track the reference trajectory thus providing robustness towards uncertainties. To incorporate realistic aspect in the interceptor scenario, input saturation has been considered for the lateral acceleration of the missile. Stability analysis has been performed using a suitable Lyapunov function which proves Uniformly Ultimately Bounded (UUB) stability of the system through the proposed control approach. The efficacy of the proposed methodology has been verified through simulations involving various engagement scenarios. The simulation results demonstrate the superior tracking performance of the proposed method in the presence of time-varying disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.