Abstract

We calculate the time-energy distribution (TED) and ionization time distribution (ITD) of photoelectrons emitted by a double-extreme-ultraviolet (XUV) pulse and a two-color XUV-IR pulse using the Wigner distribution-like function based on the strong field approximation. For a double-XUV pulse, besides two identical broad distributions generated by two XUV pulses, many interference fringes resulting from the interference between electrons generated, respectively, by two pulses appear in the TED. After adding an IR field, the TED intuitively exhibits the effect of the IR field on the electron dynamics. The ITDs during two XUV pulses are no longer the same and show the different changes for the different two-color fields, the origin of which is attributed to the change of the electric field induced by the IR field. Our analysis shows that the emission time of electrons ionized during two XUV pulses mainly depends on the electric field of the combined XUV pulse and IR pulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call