Abstract

Volumetric, high-resolution, quantitative mapping of brain-tissue relaxation properties is hindered by long acquisition times and SNR challenges. This study combines time-efficient wave-controlled aliasing in parallel imaging (wave-CAIPI) readouts with the 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), enabling full-brain quantitative T1 , T2 , and proton density (PD) maps at 1.15-mm3 isotropic voxels in 3 min. Wave-CAIPI readouts were embedded in the standard 3D-QALAS encoding scheme, enabling full-brain quantitative parameter maps (T1 , T2 , and PD) at acceleration factors of R = 3 × 2 with minimum SNR loss due to g-factor penalties. The quantitative parameter maps were estimated using a dictionary-based mapping algorithm incorporating inversion efficiency and B1 -field inhomogeneity effects. The parameter maps using the accelerated protocol were quantitatively compared with those obtained from the conventional 3D-QALAS sequence using GRAPPA acceleration of R = 2 in the ISMRM/NIST phantom, and in 10 healthy volunteers. When tested in both the ISMRM/NIST phantom and 10 healthy volunteers, the quantitative maps using the accelerated protocol showed excellent agreement against those obtained from conventional 3D-QALAS at RGRAPPA = 2. Three-dimensional QALAS enhanced with wave-CAIPI readouts enables time-efficient, full-brain quantitative T1 , T2 , and PD mapping at 1.15 mm3 in 3 min at R = 3 × 2 acceleration. The quantitative maps obtained from the accelerated wave-CAIPI 3D-QALAS protocol showed very similar values to those from the standard 3D-QALAS (R = 2) protocol, alluding to the robustness and reliability of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call