Abstract

N-doped TiO2 samples are claimed to be the most promising among the so-called second-generation photocatalysts, but their success in photocatalysis is still under debate. In this study, N-doped TiO2 nanocrystals are obtained by a simple, quick, and effortless procedure, starting from titanium alkoxide as the precursor for the sol–gel route, with the N source being either inorganic (NH3) or organic (triethylamine, urea). Structural, morphological, and optical characterizations are compared with electron paramagnetic resonance (EPR) data to give an integrated picture of such materials. No literature data on the “aging” features in the dry state of the fresh calcined samples on the EPR and diffuse reflectance spectra (DRS) measurements are reported. Our N-doped TiO2 powders show different stabilities of paramagnetic and optical signals. The photocatalytic activity is tested, toward the degradation of ethanol in aqueous media, under both visible and UV irradiation, in this latter case resembling the same trend of the paramagnetic species decay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call