Abstract

A detailed derivation of a finite-time arbitrary-motion incompressible cascade theory is presented for both Laplace and frequency domains. The generalized cascade lift deficiency function is shown to be consistent with the generalized Theodorsen's lift deficiency function when the wake spacing approaches infinity or when the reduced frequency tends to infinity; it also yields a correct value for the zero reduced frequency limit. Efficient numerical procedures are presented for the evaluation of the cascade lift deficiency function. Numerical examples comparing the cascade lift deficiency function with Loewy's (1957) rotary-wing lift deficiency function in frequency domain are presented. Pade approximants of the cascade lift deficiency function are constructed using a Bode plot approach that allows for complex poles. A general-purpose optimization program is used to determine the coefficients of the approximant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.