Abstract

This article presents a time-domain imaging technique for layered dielectric slabs using a solid-state wavelet generator with subterahertz carrier frequency. The technique utilizes the dual nature of a wavelet, i.e., both the applicability of time-of-flight measurements and the ability of wavelets to interfere in thin dielectric layers at a carrier frequency that is preserved in spite of the ultrawideband character of the signal. This results in a very high sensitivity of the time delay of the resultant pulse to variations in the effective thickness (thickness × refractive index) of the dielectric layer. It is shown using a plane-wave analysis of the pulse propagation that under certain conditions, this sensitivity enhancement can reach an order of magnitude. The experimental setup for the reflection-mode operation is described and its performance in the discrimination of healthy and malignant tissues and in the detection of corrosion under paint is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.