Abstract

An integrated time domain state space identification technique for structural systems is presented. This technique integrates the Observability Range Space Extraction identification algorithm, Balanced Realization model reduction algorithm, and Least Square model updating algorithm to generate low order and highly accurate state space models for structural systems based upon time domain data. The algorithms are integrated in such a manner that the Observability Range Space Extraction identification algorithm is used to generate an initial overparameterized state space model and then the Balanced Realization model reduction and Least Square model updating algorithms are used to iteratively reduce and update the model to achieve minimum prediction errors in time domain. We shall present the Observability Range Space Extraction identification algorithm and the Least Square model updating algorithm and discuss the integrated identification technique. The MIT Middeck Active Control Experiment (MACE) is used as an application example. MACE is an active structure control experiment to be conducted in the Space Shuttle middeck. Results of ground experiments using this technique will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.