Abstract
Oja's equations describe a well-studied system for unsupervised Hebbian learning of principal components. This paper derives the explicit time-domain solution of Oja's equations for the single-neuron case. It also shows that, under a linear change of coordinates, these equations are a gradient system in the general multi-neuron case. This latter result leads to a new Lyapunov-like function for Oja's equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.