Abstract

Single-source time-domain electric- and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia et al. alongside the high-order divergence- and quasi curl-conforming (DQCC) basis functions of Valdes et al. The combination of these two sets allows for a well-conditioned mapping from div- to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call