Abstract

Using the time domain formulation of the theory of the tunnel junction, we investigated Shapiro steps by digital simulation, under the condition of a constant current source given by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I_{dc} + I_{rf} \sin \omegat</tex> . The integral kernels for the Josephson and the quasiparticle current were computed assuming a nonzero pair breaking parameter <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\delta=0.1</tex> , and T = 0K. We obtained I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rf</inf> dependence of the zeroth and first Shapiro steps, I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> and I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> , and the frequency dependence of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I_{1}^{\MAX}</tex> , the maximum of the first Shapiro step as a function of I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rf</inf> , for a few values of the junction capacitance. we found the following results. (1) <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I_{1}^{\MAX}/I_{c}</tex> (I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> :the critical current), showed the Riedel peak at <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega/\omega_{g} \simeq 1</tex> , where ω <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</inf> is the gap frequency 4 Δ/h. (2) For <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega/\omega_{g} &gt;1\cdot I_{1}^{\MAX}/I_{c}</tex> agrees well with that for the constant voltage bias. (3) As the frequency becomes smaller below <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega_{g} \cdot I_{1}^{\MAX}/I_{c}</tex> is severely depressed compared to that for the constant voltage bias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call