Abstract

The electron momentum density obtained from the Schwinger-like mechanism is evaluated for a graphene sample immersed in a homogeneous time-dependent electric field. Based on the analogy between graphene low-energy electrons and quantum electrodynamics (QED), numerical techniques borrowed from strong field QED are employed and compared to approximate analytical approaches. It is demonstrated that for some range of experimentally accessible parameters, the pair production proceeds by sequences of adiabatic evolutions followed by non-adiabatic Landau-Zener transitions, reminiscent of the Kibble-Zurek mechanism describing topological defect density in second order phase transitions. For some field configurations, this yields interference patterns in momentum space which are explained in terms of the adiabatic-impulse model and the Landau-Zener-St\"{u}ckelberg interferometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.