Abstract

A general Discontinuous Galerkin framework is introduced for symmetric systems of conservations laws. It is applied to the three-dimensional electromagnetic wave propagation in heterogeneous media, and to the propagation of aeroacoustic perturbations of either uniform or nonuniform, steady solutions of the three-dimensional Euler equations. In all these linear contexts, the time evolution of some quadratic wave energy is given in a balance equation, with a volumic source term for aeroacoustics in a nonuniform flow. An explicit leap-frog time scheme along with centered numerical fluxes are used in the proposed Discontinuous Galerkin Time Domain (DGTD) method, in order to achieve a discrete equivalent of the balance equation for the wave energy. The scheme introduced is genuinely nondissipative. Numerical first-order boundary conditions are developed to bound the domain and stability is proved on arbitrary unstructured meshes and discontinuous finite elements, under some CFL-like stability condition on the time step. Numerical results obtained with a parallel implementation of the method based on mesh partitioning and message passing are presented to show the potential of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call