Abstract

The spinmotive force associated with a moving domain wall is observed directly in Permalloy nanowires using real time voltage measurements with proper subtraction of the electromotive force. Whereas the wall velocity exhibits nonlinear dependence on magnetic field, the generated voltage increases linearly with the field. We show that the sign of the voltage reverses when the wall propagation direction is altered. Numerical simulations explain quantitatively these features of spinmotive force and indicate that it scales with the field even in a field range where the wall motion is no longer associated with periodic angular rotation of the wall magnetization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.