Abstract

This paper is concerned with the hydroelastic problem of a pontoon-type, very large floating structure (VLFS) edged with the perforated plates, non-perforated plates or their combination anti-motion device both numerically and experimentally. A direct time domain modal expansion method, taking amount of the time domain Kelvin sources in hydrodynamic forces, in which the fluid flows across the perforated anti-motion plate by applying the Darcy's law, is applied to the fluid–structure interaction problem. A quarter of numerical model is built based on the symmetry of flow field and structure in hydrodynamic forces, and special care is paid to the rapid and accurate evaluation of time domain free-surface Green functions and its spatial derivatives in finite water depth by using interpolation–tabulation method. Using the developed numerical tools and the model tests conducted in a wave basin, the response-reduction efficiency of the perforated plates is systematically assessed for various wave and anti-motion plate parameters, such as plate width, porosity and submergence depth. As a result of the parametric study, the porosity 0.11 is selected as the optimal porosity, and the relationship between the porosity and the porous parameter is developed by using the least-squares fitting scheme. After simulation and verification, the dual anti-motion plates which are the perforated-impermeable-plate combination attached to the fore-end and back-end of the VLFS, are designed for more wave energy dissipation and added damping. Considering variation of the water depths in offshore, discussion on the effectiveness of these anti-motion devices at different water depths is highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call