Abstract

Wettability has been shown to influence oil recovery. This property has become central to low-salinity (LSW) and smart (SWF) water flooding recovery mechanisms research. The challenge lies in the fact that oil recovery results from the combined effects of solid-liquid and liquid-liquid interactions. This demands methods that allow an independent interpretation of wettability alteration contributions. The primary objective of this work is to assess changes in wettability through the application of Time-Domain Nuclear Magnetic Resonance (TD-NMR) T 2 distribution and diffusion coefficient, starting with a well-controlled porous system, that is, glass beads, and then a model rock (Berea), in the presence of one phase, either oil or brine exclusively. Subsequently, two-phase fluid saturation was tested. For the glass beads, dimethyldichlorosilane was used to induce a hydrophobic response, as confirmed by contact angle experiments on slides of the same material. Sodium sulfate was used for its known positive influence on oil recovery during LSW and SWF. In cases where alteration of surface properties was expected, a leftward shift of the average T 2 distribution curve modes, accompanied by a reduction on the diffusion coefficient during the aging process was observed. The results of this work confirm that fluid-solid interactions during LSW and SWF, namely a shift in wettability, take place after the injection of low-salinity water.

Highlights

  • Wettability is a rock-fluid interaction that has been shown to influence oil recovery

  • Regardless of aging temperature, Time-Domain Nuclear Magnetic Resonance (TD-NMR) data were collected at 25 ◦ C in the spectrometer

  • The contact angle behavior reflects the effect of salinity, which suggests that when surfaces are water-wet, the increment in salinity goes along with an increment in the angle

Read more

Summary

Introduction

Wettability is a rock-fluid interaction that has been shown to influence oil recovery. Craig [1] defined wettability as “the tendency of a fluid to spread on or adhere to a solid surface in the presence of other immiscible fluids.”. This tendency results from the interaction between fluid molecules and solid surfaces. These interactions originate from van der Waals, structural or electrostatic forces [2,3,4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.