Abstract

Magnetically coupled calorimeters (MCC) have extremely high potential for X-ray applications. Although very high energy-resolution has been demonstrated, until now there has been no multiplexed read-out of MCCs. We report on the first realization of a time domain multiplexed read-out of MCCs. Although this has many similarities with time domain multiplexing of transition-edge sensors, for MCCs the energy resolution is limited by the SQUID read-out noise, and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In our approach, each pixel is read out by a single first-stage SQUID that is operated in open loop. The outputs of the SQ1s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present the noise performance and compare to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9 keV and for improved readout noise achieved an energy resolution Δ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FWHM</sub> <; 6 eV for emulated multiplexing. We show that in an optimized setup, it is possible to multiplex 32 detectors without significantly degrading the intrinsic detector resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.