Abstract

In modern radars, the target detection probability is increased by lowering the detection threshold via signal processing to detect a point target with a small radar cross-section value. However, a lower threshold increases the number of false targets. In the conventional tracking method, which uses a general tracking filter, the measurement data between scans should be compared. Therefore, for a large amount of acquired measurement data, the computational complexity can be reduced by accumulating the acquired measurement data over time, recognizing the target movement as a pattern, and training a convolutional neural network (CNN) model. Here, we propose a method to create a desired target scenario by transfer learning and estimate the target position using the activation map of a binary detector CNN model. The model can detect a target using the actual acquired radar data, and the processing time remains constant, regardless of the number of false alarms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.