Abstract

A time domain approach is used to determine the dynamic aeroelastic stability of a cascade of blades. The structural model for each blade is a typical section with two degrees of freedom. The aerodynamic model is the unsteady, two-dimensional, full-potential flow through the cascade of airfoils. The unsteady equations of motion for the structure and the fluid are integrated simultaneously in time starting with the steady flowfield and a small initial disturbance applied to the airfoils. The motion of each blade is analyzed to determine the aeroelastic stability of the cascade. The effect of interblade phase angle is included in the analysis by allowing each blade to have an independent motion and considering a number of blade passages. Calculations are made using an airfoil section and structural parameters that are representative of a propfan. The results are compared with those from a separate frequency domain analysis. Good agreement between the results is observed. With the time domain approach, it is possible to consider nonlinear structural models and nonlinear force-displacement relations. The method allows a realistic simulation of the motion of the fluid and the cascade blades for a better physical understanding and it also has the potential for saving computational time when compared to the frequency domain approach for the flutter analysis of cascades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.