Abstract

Time-domain diffuse correlation spectroscopy (td-DCS) enables the depth discrimination in tissue’s blood flow recovery, considering the fraction of photons detected with higher time of flight (TOF) and longer pathlength through the tissue. However, the recovery result depends on factors such as the instrument response function (IRF), analyzed TOF gate start time, gate width and the source-detector separation (SDS). In this research we evaluate the performance of the td-DCS technique at three SDSs of 1.5, 2 and 2.5 cm to recover cerebral blood flow (CBF). To do that we presented comprehensive characterization of the td-DCS system through a series of phantom experiments. First by quality metrices such as coefficient of variation and contrast-to-noise ratios, we identified optimal time gate(s) of the TOF to extract dynamics of particles. Then using sensitivity metrices, each SDS ability to detect dynamics of particles in superficial and deeper layer was evaluated. Finally, td-DCS at each SDS was tested on healthy volunteers during cuff occlusion test and breathing tasks. According to phantom measurements, the sensitivity to estimate perfusion within the deep layer located at depth of 1.5 cm from the surface can be increased more than two times when the SDS increases from 1.5 cm to 2.5 cm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call