Abstract
We consider mixed-integer optimal control problems, whose optimality conditions involve global combinatorial optimization aspects for the corresponding Hamiltonian pointwise in time. We propose a time-domain decomposition, which makes this problem class accessible for mixed-integer programming using parallel-in-time direct discretizations. The approach is based on a decomposition of the optimality system and the interpretation of the resulting subproblems as suitably chosen mixed-integer optimal control problems on subintervals in time. An iterative procedure then ensures continuity of the states at the boundaries of the subintervals via co-state information encoded in virtual controls. We prove convergence of this iterative scheme for discrete-continuous linear-quadratic problems and present numerical results both for linear-quadratic as well as nonlinear problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.