Abstract

A time-domain beam propagation method (BPM) based on a finite-element scheme is newly formulated for nonlinear optical propagation analysis. In order to obtain steady-state solutions, a way of continuous-wave (CW) excitation is also described. The validity of this method is verified by numerical examples: self-focusing guiding phenomena and nonlinear gratings. Furthermore, this approach is also applied to characterizing nonlinear photonic crystal circuits. Specifically, a grating structure designed to modify the characteristics of light propagating within a photonic crystal waveguide and a stub-like structure including nonlinear rods are proposed, and the potential for use as optical limiting and switching devices is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call