Abstract

An efficient numerical method has been devised for the study of wave circulated by a magnetised ferrite sphere. It is a finite-difference time-domain formulation that incorporates Mur's absorbing boundary conditions and a perfectly matched layer. The electromagnetic fields inside the ferrite body are calculated using special updating equations derived from the equation of motion of the magnetization vector and Maxwell's curl equations in consistency. The electromagnetic fields inside ferrite and the power-density distribution on the ferrite's surface normal to the bias external magnetic field are obtained in a wide frequency band with a single time domain run. It is observed that an incident plane wave would circulate around the magnetised ferrite body in an open space as if the ferrite were placed inside a waveguide / microstrip junction circulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call