Abstract
A voltage multiplier rectifier with a novel time-division-multiplexing (TDM) control scheme for high step-up converters is proposed in this study. In the proposed TDM control scheme, two full-wave voltage doubler rectifiers can be combined to realise a voltage quadrupler rectifier. The proposed voltage quadrupler rectifier can reduce transformer turn ratio and transformer size for high step-up converters and also reduce voltage stress for the output capacitors and rectifier diodes. An N -times voltage rectifier can be straightforwardly produced by extending the concepts from the proposed TDM control scheme. A phase-shift full-bridge (PSFB) converter is adopted in the primary side of the proposed voltage quadrupler rectifier to construct a PSFB quadrupler converter. Experimental results for the PSFB quadrupler converter demonstrate the performance of the proposed TDM control scheme for voltage quadrupler rectifiers. An 8-times voltage rectifier is simulated to determine the validity of extending the proposed TDM control scheme to realise an N -times voltage rectifier. Experimental and simulation results show that the proposed TDM control scheme has great potential to be used in high step-up converters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.