Abstract

A single-order time-fractional diffusion-wave equation is generalized by introducing a time distributed-order fractional derivative and forcing term, while a Laplacian is replaced by a general linear multi-dimensional spatial differential operator. The obtained equation is (in the case of the Laplacian) called a time distributed-order diffusion-wave equation. We analyse a Cauchy problem for such an equation by means of the theory of an abstract Volterra equation. The weight distribution, occurring in the distributed-order fractional derivative, is specified as the sum of the Dirac distributions and the existence and uniqueness of solutions to the Cauchy problem, and the corresponding Volterra-type equation were proven for a general linear spatial differential operator, as well as in the special case when the operator is Laplacian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.