Abstract

It is of great importance to monitor large solar active regions on the far side of the Sun for space weather forecasting, in particular, to predict their appearance before they rotate into our view from the solar east limb. Local helioseismology techniques, including helioseismic holography and time distance, have successfully imaged solar far-side active regions. In this Letter, we further explore the possibility of imaging and improving the image quality of solar far-side active regions by use of time-distance helioseismology. In addition to the previously used scheme with four acoustic signal skips, a five-skip scheme is also included in this newly developed technique. The combination of both four- and five-skip far-side images significantly enhances the signal-to-noise ratio in the far-side images and reduces spurious signals. The accuracy of the far-side active region imaging is also assessed using one whole year's solar observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.