Abstract
We consider the discretization in time of an inhomogeneous parabolic integro-differential equation, with a memory term of convolution type, in a Banach space setting. The method is based on representing the solution as an integral along a smooth curve in the complex plane which is evaluated to high accuracy by quadrature, using the approach in recent work of Lopez-Fernandez and Palencia. This reduces the problem to a finite set of elliptic equations with complex coefficients, which may be solved in parallel. The method is combined with finite element discretization in the spatial variables to yield a fully discrete method. The paper is a further development of earlier work by the authors, which on the one hand treated purely parabolic equations and, on the other, an evolution equation with a positive type memory term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.