Abstract
We show that a particular noncommutative geometry, sometimes called angular or ρ-Minkowski, requires that the spectrum of time be discrete. In this noncommutative space the time variable is not commuting with the angular variable in cylindrical coordinates. The possible values that the variable can take go from minus infinity to plus infinity, equally spaced by the scale of noncommutativity. Possible self-adjoint extensions of the “time operator” are discussed. They give that a measurement of time can be any real value, but time intervals are still quantized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.