Abstract
A time-derivative preconditioned system of equations suitable for the numerical simulation of multicomponent/multiphase inviscid flows at all speeds was described in Part I of this paper. The system was shown to be hyperbolic in time and remain well conditioned in the incompressible limit, allowing time marching numerical methods to remain an efficient solution strategy. Application of conservative numerical methods to multicomponent flows containing sharp fluid interfaces was shown to generate nonphysical pressure and velocity oscillations across the contact surface, which separates the fluid components. It was demonstrated using the one-dimensional Riemann problem that these oscillations may lead to stability problems when the interface separates fluids with large density ratios, such as water and air. The effect of which leads to the requirement of small physical time steps and slow subiteration convergence for the implicit time marching numerical method. Alternatively, the nonconservative and hybrid formulations developed by the present authors were shown to eliminate this nonphysical behavior. While the nonconservative method did not converge to the correct weak solution for flow containing shocks, the hybrid method was able to capture the physically correct entropy solution and converge to the exact solution of the Riemann problem as the grid is refined. In Part II of this paper, the conservative, nonconservative, and hybrid formulations described in Part I are implemented within a two-dimensional structured body-fitted overset grid solver, and a study of two unsteady flow applications is reported. In the first application, a multiphase cavitating flow around a NACA0015 hydrofoil contained in a channel is solved, and sensitivity to the cavitation number and the spatial order of accuracy of the discretization are discussed. Next, the interaction of a shock moving in air with a cylindrical bubble of another fluid is analyzed. In the first case, the cylindrical bubble is filled with helium gas, and both the conservative and hybrid approaches perform similarly. In the second case, the bubble is filled with water and the conservative method fails to maintain numerical stability. The performance of the hybrid method is shown to be unchanged when the gas is replaced with a liquid, demonstrating the robustness and accuracy of the hybrid approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.