Abstract

The Wigner distribution function (WDF) for the time-dependent quadratic Hamiltonian system is investigated in the squeezed Schrödinger cat states with the use of Lewis–Riesenfeld theory of invariants. The nonclassical aspects of the system produced by superposition of two distinct squeezed states are analyzed with emphasis on their application into special systems beyond simple harmonic oscillator. An application of our development to the measurement of quantum state by reconstructing the WDF via Autler–Townes spectroscopy is addressed. In addition, we considered particular models such as Cadirola–Kanai oscillator, frequency stable damped harmonic oscillator, and harmonic oscillator with time-variable frequency as practical applications with the object of promoting the understanding of nonclassical effects associated with the WDF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.