Abstract

This paper proposes a time-dependent visiting trip planning (TVTP) framework to find the most efficient visiting order and plan the fastest moving paths based on Internet of Things (IoT) localization. The proposed TVTP framework consists of a deep learning based crowd density prediction model and a time-dependent visiting trip planning algorithm. In the developed prediction model, densely connected convolutional networks are explored with spatiotemporal data fusion to further reduce prediction errors. In the designed planning algorithm, visitors are guided to multiple target places at feasible time points to minimize total moving time based on predicted future crowd densities. According to our review of relevant research, this is the first framework that integrates deep learning for crowd density prediction with time-dependent planning for a multi-target visiting trip, which can precisely estimate future moving times based on predicted crowd densities and efficiently plan the optimal visiting order and guiding paths with the shortest total moving time to visit all target places. The open crowd dataset is adopted to evaluate the performance of existing works and TVTP. Experimental results show that our framework outperforms existing methods and can accurately predict the future crowd density of indoor people as well as significantly reduce the total moving time in the planned multi-target visiting trip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.