Abstract
To address the time-dependent properties of rolled AZ31B alloy, we conducted typical tests of the rate jump, creep, and stress relaxation at room temperature and 393 K. In the rate jump tests, the tensile curve exhibited a strong dependence on the strain rate, whereas compression was totally insensitive to the stress rate at both temperatures. For the creep and stress relaxation test, we observed creep strain and decay stress in the compression, which was weaker than the tensile curve. The plastic viscosity increased at 393 K because the dislocation motion was thermally activated. We then applied thermal activation theory for the repeated stress relaxation tests. The activation volume implies that cross-slip and dislocation nucleation are the operating mechanisms for creep and stress relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.