Abstract

In this paper, we apply the generalized master equation to analyze time-dependent transport through a finite quantum wire with an embedded subsystem. The parabolic quantum wire and the leads with several subbands are described by a continuous model. We use an approach originally developed for a tight-binding description selecting the relevant states for transport around the bias-window defined around the values of the chemical potential in the left and right leads in order to capture the effects of the nontrivial geometry of the system in the transport. We observe a partial current reflection as a manifestation of a quasi-bound state in an embedded well and the formation of a resonance state between an off-set potential hill and the boundary of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.