Abstract

A novel approach based on constrained real-time time-dependent density functional theory (C-RT-TDDFT) is introduced to accurately evaluate the electronic Hamiltonian coupling associated with photoinduced electron transfer (PIET) using diabatic states that are defined using constrained DFT (C-DFT). In combination with the semiclassical Marcus theory, the photoexcited ET rate for coherently coupled photoexcitation and electron transfer is determined for a given incident wavelength by combining this Hamiltonian coupling with free energy changes and ground state reorganization energies that are obtained using an implicit solvation model. As an application of this method, we consider PIET for the (Ag20–Ag)+ complex as a model of a plasmon-enhanced electron transfer process. Using solar radiation intensity, the fastest PIET rate is found to be induced by an incident wavelength that is distinct (blue-shifted) from the wavelength of strongest plasmon-like excitation associated with the Ag20+ cluster, particularly...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call